MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ratcheting droplet pairs

Author(s)
Galeano-Rios, C. A.; Couchman, M. M. P.; Caldairou, P.; Bush, John W. M.
Thumbnail
DownloadPublished version (1.972Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Millimetric droplets may be levitated on the surface of a vibrating fluid bath. Eddi et al. [Europhys. Lett. 82, 44001 (2008)] demonstrated that when a pair of levitating drops of unequal size are placed nearby, they interact through their common wavefield in such a way as to self-propel through a ratcheting mechanism. We present the results of an integrated experimental and theoretical investigation of such ratcheting pairs. Particular attention is given to characterizing the dependence of the ratcheting behavior on the droplet sizes and vibrational acceleration. Our experiments demonstrate that the quantized inter-drop distances of a ratcheting pair depend on the vibrational acceleration, and that as this acceleration is increased progressively, the direction of the ratcheting motion may reverse up to four times. Our simulations highlight the critical role of both the vertical bouncing dynamics of the individual drops and the traveling wave fronts generated during impact on the ratcheting motion, allowing us to rationalize the majority of our experimental findings.
Date issued
2018-09
URI
https://hdl.handle.net/1721.1/123527
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Chaos
Publisher
AIP Publishing
Citation
Galeano-Rios, C.A. et al. "Ratcheting droplet pairs." Chaos 28, 9 (September 2018): 096112 © 2018 Author(s)
Version: Final published version
ISSN
1054-1500
1089-7682

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.