dc.contributor.author | Barraquand, Guillaume | |
dc.contributor.author | Borodin, Alexei | |
dc.contributor.author | Corwin, Ivan | |
dc.contributor.author | Wheeler, Michael | |
dc.date.accessioned | 2020-01-23T21:18:10Z | |
dc.date.available | 2020-01-23T21:18:10Z | |
dc.date.issued | 2018-08-27 | |
dc.date.submitted | 2017-05-12 | |
dc.identifier.issn | 0012-7094 | |
dc.identifier.issn | 1547-7398 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/123662 | |
dc.description.abstract | We consider the asymmetric simple exclusion process (ASEP) on the positive integers with an open boundary condition. We show that, when starting devoid of particles and for a certain boundary condition, the height function at the origin fluctuates asymptotically (in large time τ) according to the Tracy–Widom Gaussian orthogonal ensemble distribution on the τ[superscript 1/3]-scale. This is the first example of Kardar–Parisi–Zhang asymptotics for a half-space system outside the class of free-fermionic/determinantal/Pfaffian models. Our main tool in this analysis is a new class of probability measures on Young diagrams that we call half-space Macdonald processes, as well as two surprising relations. The first relates a special (Hall–Littlewood) case of these measures to the half-space stochastic six-vertex model (which further limits to the ASEP) using a Yang–Baxter graphical argument. The second relates certain averages under these measures to their half-space (or Pfaffian) Schur process analogues via a refined Littlewood identity. Keywords: Kardar–Parisi–Zhang universality class; interacting particle systems; asymmetric simple exclusion process; six-vertex model; integrable probability; Macdonald symmetric functions; Yang–Baxter equation | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant DMS-160790) | en_US |
dc.language.iso | en | |
dc.publisher | Duke University Press | en_US |
dc.relation.isversionof | 10.1215/00127094-2018-0019 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Barraquand, Guillaume et al. "Stochastic six-vertex model in a half-quadrant and half-line open asymmetric simple exclusion process." Duke Mathematical Journal, 167, 13 (August 2018): 2457--2529. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Duke Mathematical Journal | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2019-11-08T13:16:44Z | |
dspace.date.submission | 2019-11-08T13:16:48Z | |
mit.journal.volume | 167 | en_US |
mit.journal.issue | 13 | en_US |
mit.metadata.status | Complete | |