Granular shape memory ceramic packings
Author(s)
Yu, Hang; Hassani Gangaraj, Seyyed Mostafa; Du, Zehui; Gan, Chee Lip; Schuh, Christopher A
DownloadYu et al Revised Submission.doc (2.477Mb)
Additional downloads
Terms of use
Metadata
Show full item recordAbstract
Although bulk shape memory ceramics (SMCs) are brittle, in particulate form they exhibit large recoverable strains in both shape memory and superelastic modes. Here, we investigate the fundamentals of mechanically- and thermally-triggered martensitic transformation of granular SMC packings. Specifically, (ZrO2)1-x-(CeO2)x is studied in three different composition regimes. In the shape memory regime (below the martensite finish temperature), confined uniaxial compression leads to martensite re-orientation in the granular SMC packing, with the peak intensity of preferred crystallographic orientation increasing with external loading. In the intermediate regime (between austenite start and martensite start temperatures), confined uniaxial compression leads to irreversible martensitic transformation with the transformed volume increasing with external loading. This provides direct evidence of stress-induced martensitic transformation in granular SMCs. In the superelastic regime (above the austenite finish temperature), confined uniaxial compression leads to forward (during loading) and reverse (during unloading) martensitic transformation, manifesting in a large hysteresis loop in each load-unload cycle with remarkably high energy dissipation density. Based on finite element modeling of SMC particles in contact, we explore the martensitic transformation under non-uniform Hertzian stresses, which in turn provides insight on the experimental results. Keywords: Shape memory; Granular materials; Zirconia; Martensitic transformation; Superelasticity
Date issued
2017-06Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Acta Materialia
Publisher
Elsevier BV
Citation
Yu, Hang Z. et al. "Granular shape memory ceramic packings." Acta Materialia 132 (June 2017): 455-466 © 2017 Acta Materialia Inc
Version: Author's final manuscript
ISSN
1359-6454
Collections
The following license files are associated with this item: