Parametric chemistry reverse engineering biomaterial composites for additive manufacturing of bio-cement structures across scales
Author(s)
Duro-Royo, Jorge; Van Zak, Joshua Jordan; Tai, Y.J.; Ling, A.S.; Oxman, Neri
DownloadMediatedMatterGroup_S2MConference_final_12.6.16.pdf (596.5Kb)
Terms of use
Metadata
Show full item recordAbstract
Motivated by the need to develop novel renewable and biocompatible composites for complex macro-scale structures, and inspired by natural shell, insect cuticles, and plant cell walls, we have developed a multi-material, robotic 3D printing platform and associated computational techniques that leverage the concepts of parametric chemistry and tunable hierarchical structuring for the additive manufacturing of hierarchical biomaterials, in meter-scale forms, with complex geometries. To do so, we have designed and engineered a bio-cement composite using natural and abundant polymers such as chitosan and cellulose. After assessing the chemical, mechanical, and optical properties of this prototypical bio-composite, we utilized these results as inputs to modulate our computational design and robotic fabrication platforms. Doing so has taken us closer to our goal of true Fabrication Information Modelling (FIM), which integrates atomistic material properties to inform large-scale digital fabrication.
Date issued
2017-04Department
Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Proceedings of the International Conference on Sustainable Smart Manufacturing
Publisher
CRC Press
Citation
Duro-Royo, J. et al. "Parametric chemistry reverse engineering biomaterial composites for additive manufacturing of bio-cement structures across scales." Proceedings of the International Conference on Sustainable Smart Manufacturing, October 2016, Lisbon, Portugal, edited by Fernando Moreira da Silva, Helena Maria Bártolo, Paulo Bártolo, Rita Almendra, Filipa Roseta, Henrique Amorim Almeida, Ana Cristina Lemos , CRC Press, April 2017.
Version: Author's final manuscript
ISBN
9781315198101