Show simple item record

dc.contributor.authorCastellanos, Maria A.
dc.contributor.authorDodin, Amro
dc.contributor.authorWillard, Adam P.
dc.date.accessioned2020-02-11T20:45:41Z
dc.date.available2020-02-11T20:45:41Z
dc.date.issued2020-01
dc.date.submitted2019-10
dc.identifier.issn1463-9076
dc.identifier.issn1463-9084
dc.identifier.urihttps://hdl.handle.net/1721.1/123793
dc.description.abstractThis manuscript presents a strategy for controlling the transformation of excitonic states through the design of circuits made up of coupled organic dye molecules. Specifically, we show how unitary transformation matrices can be mapped to the Hamiltonians of physical systems of dye molecules with specified geometric and chemical properties. The evolution of these systems over specific time scales encodes the action of the unitary transformation. We identify bounds on the complexity of the transformations that can be represented by these circuits and on the optoelectronic properties of the dye molecules that comprise them. We formalize this strategy and apply it to determine the excitonic circuits of the four universal quantum logic gates: NOT, Hadamard, π/8 and CNOT. We discuss the properties of these circuits and how their performance is expected to be influenced by the presence of environmental noise.en_US
dc.description.sponsorshipNational Science Foundation (Grant CHE-1839155)en_US
dc.description.sponsorshipUnited States. Department of Energy (Award DE-SC0019998)en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c9cp05625den_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistry (RSC)en_US
dc.titleOn the design of molecular excitonic circuits for quantum computing: the universal quantum gatesen_US
dc.typeArticleen_US
dc.identifier.citationCastellanos, Maria A. et al. "On the design of molecular excitonic circuits for quantum computing: the universal quantum gates." Physical Chemistry Chemical Physics 22, 5 (January 2020): 3048-3057 © 2020 Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.relation.journalPhysical Chemistry Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2020-02-11T16:26:44Z
mit.journal.volume22en_US
mit.journal.issue5en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record