Show simple item record

dc.contributor.authorLiu, Fang
dc.contributor.authorSanchez, David M.
dc.contributor.authorKulik, Heather Janine
dc.contributor.authorMartínez, Todd J.
dc.date.accessioned2020-02-19T20:06:18Z
dc.date.available2020-02-19T20:06:18Z
dc.date.issued2018-10
dc.date.submitted2018-06
dc.identifier.issn0020-7608
dc.identifier.urihttps://hdl.handle.net/1721.1/123830
dc.description.abstractThe conductor‐like polarizable continuum model (C‐PCM) with switching/Gaussian smooth discretization is a widely used implicit solvation model in quantum chemistry. We have previously implemented C‐PCM solvation for Hartree‐Fock (HF) and density functional theory (DFT) on graphical processing units (GPUs), enabling the quantum mechanical treatment of large solvated biomolecules. Here, we first propose a GPU‐based algorithm for the PCM conjugate gradient linear solver that greatly improves the performance for very large molecules. The overhead for PCM‐related evaluations now consumes less than 15% of the total runtime for DFT calculations on large molecules. Second, we demonstrate that our algorithms tailored for ground state C‐PCM are transferable to excited state properties. Using a single GPU, our method evaluates the analytic gradient of the linear response PCM time‐dependent density functional theory energy up to 80× faster than a conventional central processing unit (CPU)‐based implementation. In addition, our C‐PCM algorithms are transferable to other methods that require electrostatic potential (ESP) evaluations. For example, we achieve speed‐ups of up to 130× for restricted ESP‐based atomic charge evaluations, when compared to CPU‐based codes. We also summarize and compare the different PCM cavity discretization schemes used in some popular quantum chemistry packages as a reference for both users and developers.en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE‐SC0018906 SciDAC)en_US
dc.description.sponsorshipNational Science Foundation (Grant ACI‐1429830)en_US
dc.description.sponsorshipNational Science Foundation (Grant ACI‐1548562)en_US
dc.publisherWileyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/qua.25760en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Kuliken_US
dc.titleExploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductor-like polarizable continuum modelsen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Fang et al. "Exploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductor‐like polarizable continuum models." International Journal of Quantum Chemistry 119, 1 (January 2019): e25760 © 2018 Wileyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalInternational Journal of Quantum Chemistryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2020-02-13T02:16:38Z
mit.journal.volume119en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record