MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time Smartphone-based Sleep Staging using 1-Channel EEG

Author(s)
Koushik, Abhay; Amores Fernandez, Judith; Maes, Patricia
Thumbnail
Downloadbsn_19 (1).pdf (1.736Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Automatic and real-time sleep scoring is necessary to develop user interfaces that trigger stimuli in specific sleep stages. However, most automatic sleep scoring systems have been focused on offline data analysis. We present the first, real-time sleep staging system that uses deep learning without the need for servers in a smartphone application for a wearable EEG. We employ real-time adaptation of a single channel Electroencephalography (EEG) to infer from a Time-Distributed Convolutional Neural Network (CNN). Polysomnography (PSG) -the gold standard for sleep staging-requires a human scorer and is both complex and resource-intensive. Our work demonstrates an end-to-end, smartphone-based pipeline that can infer sleep stages in just single 30-second epochs, with an overall accuracy of 83.5% on 20-fold cross validation for 5-stage classification of sleep stages using the open Sleep-EDF dataset. For comparison, inter-rater reliability among sleep-scoring experts is about 80% (Cohen's k=0\pmb.68 to \pmb0.76). We further propose an on-device metric independent of the deep learning model which increases the average accuracy of classifying deep-sleep (N3) to more than 97.2% on 4 test nights using power spectral analysis. Keyword: Sleep; Electroencephalography; Real-time systems; Brain modeling; Electrooculography; Spectral analysis; Training
Date issued
2019-05
URI
https://hdl.handle.net/1721.1/123845
Department
Massachusetts Institute of Technology. Media Laboratory
Journal
Proceedings of the 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN)
Publisher
IEEE
Citation
Koushik, Abhay, Judith Amores, and Pattie Maes. "Real-time Smartphone-based Sleep Staging using 1-Channel EEG." IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), May 2019, Chicago, Illinois, USA, IEEE © 2019 by IEEE
Version: Author's final manuscript
ISBN
9781538674772
ISSN
2376-8894

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.