Comparing many-body localization lengths via nonperturbative construction of local integrals of motion
Author(s)
Peng, Pai; Li, Zeyang; Yan, Haoxiong; Wei, Xuan; Cappellaro, Paola
DownloadPhysRevB.100.214203.pdf (1.136Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Many-body localization (MBL), characterized by the absence of thermalization and the violation of conventional thermodynamics, has elicited much interest both as a fundamental physical phenomenon and for practical applications in quantum information. A phenomenological model which describes the system using a complete set of local integrals of motion (LIOMs) provides a powerful tool to understand MBL but can usually be computed only approximately. Here we explicitly compute a complete set of LIOMs with a nonperturbative approach by maximizing the overlap between LIOMs and physical spin operators in real space. The set of LIOMs satisfies the desired exponential decay of the weight of LIOMs in real space. This LIOM construction enables a direct mapping from the real-space Hamiltonian to the phenomenological model and thus enables studying the localized Hamiltonian and the system dynamics. We can thus study and compare the localization lengths extracted from the LIOM weights, their interactions, and dephasing dynamics, revealing interesting aspects of many-body localization. Our scheme is immune to accidental resonances and can be applied even at the phase transition point, providing a tool to study the microscopic features of the phenomenological model of MBL.
Date issued
2019-12Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringJournal
Physical Review B
Publisher
American Physical Society (APS)
Citation
Pai, Peng et al. "Comparing many-body localization lengths via nonperturbative construction of local integrals of motion." Physical Review B 100, 21 (December 2019): 214203 ©2019 American Physical Society
Version: Final published version
ISSN
2469-9950
2469-9969