MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Control of a flexible, surface-piercing hydrofoil for high-speed, small-scale applications

Author(s)
Bousquet, Gabriel David Elie Sylvain; Triantafyllou, Michael S; Slotine, Jean-Jacques E
Thumbnail
DownloadAccepted version (5.811Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In recent years, hydrofoils have become ubiquitous and critical components of high-performance surface vehicles. Twenty-meter-long hydrofoil sailing craft are capable of reaching speeds in excess of 45 knots. Hydrofoil dinghies routinely travel faster than the wind and reach speeds up to 30 knots. Besides, in the quest for super-maneuverability, actuated hydrofoils could enable the efficient generation of large forces on demand. However, the control of hydrofoil systems remains challenging, especially in rough seas. With the intent to ultimately enable the design of versatile, small-scale, high-speed, and super-maneuverable surface vehicles, we investigate the problem of controlling the lift force generated by a flexible, surface-piercing hydrofoil traveling at high speed through a random wave field. We present a test platform composed of a rudder-like vertical hydrofoil actuated in pitch. The system is instrumented with velocity, force, and immersion depth sensors. We carry out high-speed field experiments in the presence of naturally occurring waves. The 2 cm chord hydrofoil is successfully controlled with a LTV/feedback linearization controller at speeds ranging from 4 to 10+ m/s.
Date issued
2017-09
URI
https://hdl.handle.net/1721.1/123873
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Publisher
IEEE
Citation
G. D. Bousquet, M. S. Triantafyllou and J. E. Slotine, "Control of a flexible, surface-piercing hydrofoil for high-speed, small-scale applications," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 4203-4208.
Version: Author's final manuscript
ISBN
9781538626825
ISSN
2153-0866

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.