Show simple item record

dc.contributor.authorZhang, Yirui
dc.contributor.authorKatayama, Yu
dc.contributor.authorTatara, Ryoichi
dc.contributor.authorGiordano, Livia
dc.contributor.authorYu, Yang
dc.contributor.authorFraggedakis, Dimitrios
dc.contributor.authorSun, Jame Guangwen
dc.contributor.authorMaglia, Filippo
dc.contributor.authorJung, Roland
dc.contributor.authorBazant, Martin Z
dc.contributor.authorShao-Horn, Yang
dc.date.accessioned2020-02-28T18:31:33Z
dc.date.available2020-02-28T18:31:33Z
dc.date.issued2019-11
dc.date.submitted2019-08
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttps://hdl.handle.net/1721.1/123888
dc.description.abstractUnderstanding (electro-)chemical reactions at the electrode–electrolyte interface (EEI) is crucial to promote the cycle life of lithium-ion batteries. In this study, we developed an in situ Fourier-transform infrared spectroscopy (FT-IR) method, which provided unprecedented information on the oxidation of carbonate solvents via dehydrogenation on LiNixMnyCo1−x−yO2 (NMC). While ethylene carbonate (EC) was stable against oxidation on Pt up to 4.8 VLi, unique evidence for dehydrogenation of EC on LiNi0.8Co0.1Mn0.1O2 (NMC811) at voltages as low as 3.8 VLi was revealed by in situ FT-IR measurements, which was supported by density functional theory (DFT) results. Unique dehydrogenated species from EC were observed on NMC811 surface, including dehydrogenated EC anchored on oxides, vinylene carbonate (VC) and dehydrogenated oligomers which could diffuse away from the surface. Similar dehydrogenation on NMC811 was noted for EMC-based and LP57 (1 M LiPF6 in 3 : 7 EC/EMC) electrolytes. In contrast, no dehydrogenation was found for NMC111 or surface-modified NMC by coatings such as Al2O3. In addition, while the dehydrogenation of solvents was observed in 1 M electrolytes with different anions, they were not observed on NMC811 in the concentrated electrolyte (EC/EMC with 3.1 M LiPF6), indicating lithium coordination could suppress dehydrogenation. Dehydrogenation of carbonates on NMC811 accompanied with rapid growth of interfacial impedance with increasing voltage revealed by electrochemical impedance spectroscopy (EIS), while the electrode–electrolyte combinations without dehydrogenation did not show significant impedance growth. Therefore, minimizing carbonate dehydrogenation on the NMC surface by tuning electrode reactivity and electrolyte reactivity is critical to develop high-energy Li-ion batteries with long cycle life.en_US
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c9ee02543jen_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistry (RSC)en_US
dc.titleRevealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Yirui et al. "Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy." Energy and Environmental Science, 13, 1, (2020): 183-199. © 2019 The Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalEnergy and Environmental Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2019-12-13T14:47:33Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record