Show simple item record

dc.contributor.authorHuang, Xin
dc.contributor.authorJasour, Ashkan M.
dc.contributor.authorDeyo, Matthew Quinn
dc.contributor.authorHofmann, Andreas
dc.contributor.authorWilliams, Brian C
dc.date.accessioned2020-03-03T19:59:26Z
dc.date.available2020-03-03T19:59:26Z
dc.date.issued2019-01
dc.identifier.isbn9781538613955
dc.identifier.urihttps://hdl.handle.net/1721.1/123989
dc.description.abstractIn this paper, we address the problem of risk-aware conditional planning where the goal is generating risk bounded motion policies in the presence of uncertainty. The problem is modeled as a chance-constrained Partially Observable Markov Decision Process (CC-POMDP) with one controllable agent and multiple uncontrollable agents, each of which can choose from a set of maneuver actions. The risk is defined as the probability of the controllable agent violating safety constraints. Off-line computations include generating a library of probabilistic maneuvers for the controllable agent and planning an initial motion policy to execute. During runtime, the conditional planner can quickly look up maneuver sequences to ensure risk bounds as the world around our agent evolves. We introduce the iterative RAO* heuristic search algorithm, which iteratively generates risk bounded conditional plans over a finite horizon. We demonstrate the performance of the provided approach on two planning problems of autonomous vehicles.en_US
dc.language.isoen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/cdc.2018.8619771en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceXin Huangen_US
dc.titleHybrid Risk-Aware Conditional Planning with Applications in Autonomous Vehiclesen_US
dc.typeArticleen_US
dc.identifier.citationX. Huang, A. Jasour, M. Deyo, A. Hofmann and B. C. Williams, "Hybrid Risk-Aware Conditional Planning with Applications in Autonomous Vehicles," 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, 2018, pp. 3608-3614.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.approverXin Huangen_US
dc.relation.journal2018 IEEE Conference on Decision and Control (CDC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T14:18:32Z
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record