Show simple item record

dc.contributor.authorLi, Harriet
dc.contributor.authorGarg, Vikram V.
dc.contributor.authorWillcox, Karen E
dc.date.accessioned2020-03-03T20:13:50Z
dc.date.available2020-03-03T20:13:50Z
dc.date.issued2017-11
dc.date.submitted2017-10
dc.identifier.issn0045-7825
dc.identifier.urihttps://hdl.handle.net/1721.1/123995
dc.description.abstractAn inverse problem seeks to infer unknown model parameters using observed data. We consider a goal-oriented inverse problem, where the goal of inferring parameters is to use them in predicting a quantity of interest (QoI). Recognizing that multiple models of varying fidelity and computational cost may be available to describe the physical system, we formulate a goal-oriented model adaptivity approach that leverages multiple models while controlling the error in the QoI prediction. In particular, we adaptively form a mixed-fidelity model by using models of different levels of fidelity in different subregions of the domain. Taking the solution of the inverse problem with the highest-fidelity model as our reference QoI prediction, we derive an adjoint-based third-order estimate for the QoI error from using a lower-fidelity model. Localization of this error then guides the formation of mixed-fidelity models. We demonstrate the method for example problems described by convection–diffusion–reaction models. For these examples, our mixed-fidelity models use the high-fidelity model over only a small portion of the domain, but result in QoI estimates with small relative errors. We also demonstrate that the mixed-fidelity inverse problems can be cheaper to solve and less sensitive to the initial guess than the high-fidelity inverse problems. Keyword: Inference; Goal-oriented adaptive modeling; A posteriori error estimation; Multi-fidelity modeling; Adjointsen_US
dc.description.sponsorshipUnited States. Department of Energy ( DE-FC02-13ER26129/DE-21 SC000929)en_US
dc.language.isoen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttps://doi.org/10.1016/j.cma.2017.11.018en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Willcox via Barbara Williamsen_US
dc.titleModel Adaptivity for Goal-Oriented Inference using Adjointsen_US
dc.title.alternativeModel adaptivity for goal-oriented inference using adjointsen_US
dc.typeArticleen_US
dc.identifier.citationLi, Harriet, Vikram V. Garg, and Karen Willcox. "Model adaptivity for goal-oriented inference using adjoints." Computer Methods in Applied Mechanics and Engineering, 331 (April 2018): 1-22.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.approverWillcox, Karen Een_US
dc.relation.journalComputer Methods in Applied Mechanics and Engineeringen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T13:45:34Z
mit.journal.volume331en_US
mit.licensePUBLISHER_CCen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record