Show simple item record

dc.contributor.authorAlexandron, Giora
dc.contributor.authorYoo, Lisa Y.
dc.contributor.authorRuiperez Valiente, Jose Antonio
dc.contributor.authorLee, Sunbok
dc.contributor.authorPritchard, David E.
dc.date.accessioned2020-03-03T21:49:16Z
dc.date.available2020-03-03T21:49:16Z
dc.date.issued2019-07
dc.identifier.issn1560-4292
dc.identifier.issn1560-4306
dc.identifier.urihttps://hdl.handle.net/1721.1/124002
dc.description.abstractThe rich data that Massive Open Online Courses (MOOCs) platforms collect on the behavior of millions of users provide a unique opportunity to study human learning and to develop data-driven methods that can address the needs of individual learners. This type of research falls into the emerging field of learning analytics. However, learning analytics research tends to ignore the issue of the reliability of results that are based on MOOCs data, which is typically noisy and generated by a largely anonymous crowd of learners. This paper provides evidence that learning analytics in MOOCs can be significantly biased by users who abuse the anonymity and open-nature of MOOCs, for example by setting up multiple accounts, due to their amount and aberrant behavior. We identify these users, denoted fake learners, using dedicated algorithms. The methodology for measuring the bias caused by fake learners’ activity combines the ideas of Replication Research and Sensitivity Analysis. We replicate two highly-cited learning analytics studies with and without fake learners data, and compare the results. While in one study, the results were relatively stable against fake learners, in the other, removing the fake learners’ data significantly changed the results. These findings raise concerns regarding the reliability of learning analytics in MOOCs, and highlight the need to develop more robust, generalizable and verifiable research methods. Keywords: Learning Analytics; MOOCs; Replication research; Sensitivity analysis; Fake learnersen_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s40593-019-00183-1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf Pritcharden_US
dc.titleAre MOOC Learning Analytics Results Trustworthy? With Fake Learners, They Might Not Be!en_US
dc.typeArticleen_US
dc.identifier.citationAlexandron, Giora et al. "Are MOOC Learning Analytics Results Trustworthy? With Fake Learners, They Might Not Be!" International Journal of Artificial Intelligence in Education 29, 4 (July 2019): 484–506en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.contributor.departmentMassachusetts Institute of Technology. Program in Comparative Media Studies/Writing
dc.relation.journalInternational Journal of Artificial Intelligence in Educationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1007/s40593-019-00183-1en_US
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dc.identifier.doi10.1007/s40593-019-00183-1
dspace.date.submission2019-07-03T12:43:15Z
mit.journal.volume29en_US
mit.journal.issue4en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record