Show simple item record

dc.contributor.authorBertei, A.
dc.contributor.authorCarpanese, M.P.
dc.contributor.authorClematis, D.
dc.contributor.authorBarbucci, A.
dc.contributor.authorBazant, Martin Z
dc.contributor.authorNicolella, C.
dc.date.accessioned2020-03-04T17:26:03Z
dc.date.available2020-03-04T17:26:03Z
dc.date.issued2016-11
dc.date.submitted2016-09
dc.identifier.issn0167-2738
dc.identifier.urihttps://hdl.handle.net/1721.1/124004
dc.description.abstractThis study presents a physically-based model for the impedance simulation of the oxygen reduction reaction in porous strontium-doped lanthanum manganite (LSM) cathodes. The model describes the surface mechanism only, taking into account the co-limited adsorption/diffusion of oxygen and the charge-transfer reaction at the three-phase boundary (TPB). After calibration with experimental impedance spectra, the model is used to identify the transition of kinetic regime from the surface to the bulk path mechanism, which occurs at cathodic dc bias of ca. 0.2 V within 700–800 °C. The transition is highlighted by a significant decrease in impedance and the appearance of a low-frequency inductive loop. The model consistently reproduces the impedance spectra before the transition of kinetic regime with a single set of parameters, allowing for the deconvolution of two features, one associated with the co-limited adsorption/diffusion process (ca. 5 Hz) and another minor contribution due to the charge-transfer at the TPB (ca. 35 Hz). The model and its parameters, which quantitatively agree with the literature, can be used as a basis to optimize the microstructural and surface properties of technical LSM-based cathodes, showing that the TPB length is not the main parameter to be maximized. Keywords: LSM; Oxygen reduction reaction; Surface path; Modelling; Impedance spectroscopyen_US
dc.language.isoen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ssi.2016.09.028en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Bazant via Erja Kajosaloen_US
dc.titleUnderstanding the electrochemical behaviour of LSM-based SOFC cathodes. Part II - Mechanistic modelling and physically-based interpretationen_US
dc.typeArticleen_US
dc.identifier.citationBertei, A. et al. "Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part II - Mechanistic modelling and physically-based interpretation." Solid State Ionics 303 (May 2017): 181-190 © 2016 Elsevieren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.approverBazant, Martin Z.en_US
dc.relation.journalSolid State Ionicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T14:00:15Z
mit.journal.volume303en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record