MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measuring Saccade Latency using Smartphone Cameras

Author(s)
Lai, Hsin-Yu; Saavedra-Pena, Gladynel; Sodini, Charles G.; Sze, Vivienne; Heldt, Thomas
Thumbnail
Download08703178(1).pdf (2.765Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Objective: Accurate quantification of neurodegenerative disease progression is an ongoing challenge that complicates efforts to understand and treat these conditions. Clinical studies have shown that eye movement features may serve as objective biomarkers to support diagnosis and tracking of disease progression. Here, we demonstrate that saccade latency - an eye movement measure of reaction time - can be measured robustly outside of the clinical environment with a smartphone camera. Methods: To enable tracking of saccade latency in large cohorts of patients and control subjects, we combined a deep convolutional neural network for gaze estimation with a model-based approach for saccade onset determination that provides automated signal-quality quantification and artifact rejection. Results: Simultaneous recordings with a smartphone and a high-speed camera resulted in negligible differences in saccade latency distributions. Furthermore, we demonstrated that the constraint of chinrest support can be removed when recording healthy subjects. Repeat smartphone-based measurements of saccade latency in eleven self-reported healthy subjects resulted in an intraclass correlation coefficient of 0.76, showing our approach has good to excellent test-retest reliability. Additionally, we conducted over 19,000 saccade latency measurements in 29 self-reported healthy subjects and observed significant intra- and inter-subject variability, which highlights the importance of individualized tracking. Lastly, we showed that with around 65 measurements we can estimate mean saccade latency to within less-than-10-ms precision, which takes within four minutes with our setup. Conclusion and Significance: By enabling repeat measurements of saccade latency and its distribution in individual subjects, our framework opens the possibility of quantifying patient state on a finer timescale in a broader population than previously possible.
Date issued
2019-04
URI
https://hdl.handle.net/1721.1/124009
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Microsystems Technology Laboratories
Journal
IEEE Journal on Biomedical and Health Informatics
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Lai, Hsin-Yu et al. "Measuring Saccade Latency using Smartphone Cameras." IEEE Journal on Biomedical and Health Informatics (April 2019) © 2019 IEEE
Version: Author's final manuscript
ISSN
2168-2194
2168-2208

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.