MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncertainty analysis of correlated parameters in automated reaction mechanism generation

Author(s)
Gao, Connie Wu; Liu, Mengjie; Green Jr, William H
Thumbnail
Downloadmanuscript.pdf (881.6Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Uncertainty analysis is a useful tool for inspecting and improving detailed kinetic mechanisms because it can identify the greatest sources of model output error. Owing to the very nonlinear relationship between kinetic and thermodynamic parameters and computed concentrations, model predictions can be extremely sensitive to uncertainties in some parameters while uncertainties in other parameters can be irrelevant. Error propagation becomes even more convoluted in automatically generated kinetic models, where input uncertainties are correlated through kinetic rate rules and thermodynamic group values. Local and global uncertainty analyses were implemented and used to analyze error propagation in Reaction Mechanism Generator (RMG), an open‐source software for generating kinetic models. A framework for automatically assigning parameter uncertainties to estimated thermodynamics and kinetics was created, enabling tracking of correlated uncertainties. Local first‐order uncertainty propagation was implemented using sensitivities computed natively within RMG. Global uncertainty analysis was implemented using adaptive Smolyak pseudospectral approximations as implemented in the MIT Uncertainty Quantification Library to efficiently compute and construct polynomial chaos expansions to approximate the dependence of outputs on a subset of uncertain inputs. Cantera was used as a backend for simulating the reactor system in the global analysis. Analyses were performed for a phenyldodecane pyrolysis model. Local and global methods demonstrated similar trends; however, many uncertainties were significantly overestimated by the local analysis. Both local and global analyses show that correlated uncertainties based on kinetic rate rules and thermochemical groups drastically reduce a model's degrees of freedom and have a large impact on the determination of the most influential input parameters. These results highlight the necessity of incorporating uncertainty analysis in the mechanism generation workflow. Keywords: automatic reaction mechanism generation; chemical kinetics; polynomial chaos expansion; sensitivity analysis; uncertainty analysis
Date issued
2020-02
URI
https://hdl.handle.net/1721.1/124020
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
International Journal of Chemical Kinetics
Publisher
Wiley
Citation
Gao, Connie Wu et al. "Uncertainty analysis of correlated parameters in automated reaction mechanism generation." International Journal of Chemical Kinetics 52, 4 (February 2020): 266-282 © 2020 Wiley
Version: Author's final manuscript
ISSN
0538-8066
1097-4601

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.