MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid software prototyping for heterogeneous and distributed platforms

Author(s)
Besard, Tim P; Churavy, Valentin R; Edelman, Alan; Sutter, Bjorn De
Thumbnail
DownloadAccepted version (356.6Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The software needs of scientists and engineers are growing and their programs are becoming more compute-heavy and problem-specific. This has led to an influx of non-expert programmers, who need to use and program high-performance computing platforms. With the continued stagnation of single-threaded performance, using hardware accelerators such as GPUs or FPGAs is necessary. Adapting software to these compute platforms is a difficult task, especially for non-expert programmers, leading to applications being unable to take advantage of new hardware or requiring extensive rewrites. We propose a programming model that allows non-experts to benefit from high-performance computing, while enabling expert programmers to take full advantage of the underlying hardware. In this model, programs are generically typed, the location of the data is encoded in the type system, and multiple dispatch is used to select functionality based on the type of the data. This enables rapid prototyping, retargeting and reuse of existing software, while allowing for hardware specific optimization if required. Our approach allows development to happen in one source language enabling domain experts and performance engineers to jointly develop a program, without the overhead, friction, and challenges associated with developing in multiple programming languages for the same project. We demonstrate the viability and the core principles of this programming model in Julia using realistic examples, showing the potential of this approach for rapid prototyping, and its applicability for real-life engineering. We focus on usability for non-expert programmers and demonstrate that the potential of the underlying hardware can be fully exploited. Keywords: Julia; Generic programming; Heterogeneous systems; CUDA; Distributed computing
Date issued
2019-06
URI
https://hdl.handle.net/1721.1/124135
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advances in Engineering Software
Publisher
Elsevier BV
Citation
Besard, Tim et al. "Rapid software prototyping for heterogeneous and distributed platforms." Advances in Engineering Software 132 (June 2019): 29-46
Version: Author's final manuscript
ISSN
0965-9978

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.