Show simple item record

dc.contributor.authorDyatlov, Semen
dc.date.accessioned2020-03-23T17:49:04Z
dc.date.available2020-03-23T17:49:04Z
dc.date.issued2017
dc.identifier.issn2118-9366
dc.identifier.urihttps://hdl.handle.net/1721.1/124167
dc.description.abstractThis expository article, written for the proceedings of the Journées EDP (Roscoff, June 2017), presents recent work joint with Jean Bourgain and Long Jin. We in particular show that eigenfunctions of the Laplacian on hyperbolic surfaces are bounded from below in L² norm on each nonempty open set, by a constant depending on the set but not on the eigenvalue.en_US
dc.language.isoen
dc.publisherCellule MathDoc/CEDRAMen_US
dc.relation.isversionof10.5802/JEDP.654en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleControl of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principleen_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semyon, "Control of Eigenfunctions on Hyperbolic Surfaces: an Application of Fractal Uncertainty Principle." Journées EDP 2017: exposée no 4 (2018). doi: https://doi.org/10.5802/jedp.654 ©2018 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournées Équations aux dérivées partiellesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-12T16:02:17Z
dspace.date.submission2019-11-12T16:02:19Z
mit.journal.volume2017en_US
mit.journal.issue4en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record