Show simple item record

dc.contributor.authorBandurin, Denis A.
dc.contributor.authorShytov, Andrey V.
dc.contributor.authorLevitov, Leonid
dc.contributor.authorKumar, Roshan Krishna
dc.contributor.authorBerdyugin, Alexey I.
dc.contributor.authorBen Shalom, Moshe
dc.contributor.authorGrigorieva, Irina V.
dc.contributor.authorGeim, Andre K.
dc.contributor.authorFalkovich, Gregory
dc.date.accessioned2020-03-25T15:42:03Z
dc.date.available2020-03-25T15:42:03Z
dc.date.issued2018-10
dc.date.submitted2018-06
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/124320
dc.description.abstractViscous electron fluids have emerged recently as a new paradigm of strongly-correlated electron transport in solids. Here we report on a direct observation of the transition to this long-sought-for state of matter in a high-mobility electron system in graphene. Unexpectedly, the electron flow is found to be interaction-dominated but non-hydrodynamic (quasiballistic) in a wide temperature range, showing signatures of viscous flows only at relatively high temperatures. The transition between the two regimes is characterized by a sharp maximum of negative resistance, probed in proximity to the current injector. The resistance decreases as the system goes deeper into the hydrodynamic regime. In a perfect darkness-before-daybreak manner, the interaction-dominated negative response is strongest at the transition to the quasiballistic regime. Our work provides the first demonstration of how the viscous fluid behavior emerges in an interacting electron system.en_US
dc.description.sponsorshipCenter for Integrated Quantum Materials (CIQM) (NSF award DMR-1231319)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-18-1-0116)en_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41467-018-07004-4en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleFluidity onset in grapheneen_US
dc.typeArticleen_US
dc.identifier.citationBandurin, Denis A., Andrey V. Shytov, Leonid S. Levitov, Roshan Krishna Kumar, Alexey I. Berdyugin, Moshe Ben Shalom, Irina V. Grigorieva, Andre K. Geim, and Gregory Falkovich. “Fluidity Onset in Graphene.” Nature Communications 9, no. 1 (October 31, 2018). © 2018, The Author(s).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-03-29T15:59:00Z
dspace.orderedauthorsBandurin, Denis A.; Shytov, Andrey V.; Levitov, Leonid S.; Kumar, Roshan Krishna; Berdyugin, Alexey I.; Ben Shalom, Moshe; Grigorieva, Irina V.; Geim, Andre K.; Falkovich, Gregoryen_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T12:31:00Z
mit.journal.volume9en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record