MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electron phase-space hole transverse instability at high magnetic field

Author(s)
Hutchinson, Ian H.
Thumbnail
DownloadSubmitted version (1.037Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Analytic treatment is presented of the electrostatic instability of an initially planar electron hole in a plasma of effectively infinite particle magnetization. It is shown that there is an unstable mode consisting of a rigid shift of the hole in the trapping direction. Its low frequency is determined by the real part of the force balance between the Maxwell stress arising from the transverse wavenumber and the kinematic jetting from the hole's acceleration. The very low growth rate arises from a delicate balance in the imaginary part of the force between the passing-particle jetting, which is destabilizing, and the resonant response of the trapped particles, which is stabilizing. Nearly universal scalings of the complex frequency and with hole depth are derived. Particle in cell simulations show that the slow-growing instabilities previously investigated as coupled hole-wave phenomena occur at the predicted frequency, but with growth rates 2 to 4 times greater than the analytic prediction. This higher rate may be caused by a reduced resonant stabilization because of numerical phase-space diffusion in the simulations. ©2019 Keywords: plasma instabilities; plasma nonlinear phenomena; space plasma physics
Date issued
2019-09
URI
https://hdl.handle.net/1721.1/124325
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Plasma Physics
Publisher
Cambridge University Press (CUP)
Citation
Hutchinson, I.H., "Electron phase-space hole transverse instability at high magnetic field." Journal of Plasma Physics 85, 5 (2019): no. 905850501 doi: 10.1017/S0022377819000564 ©2019
Version: Original manuscript
ISSN
1469-7807
0022-3778

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.