MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Feedback-motion-planning with simulation-based LQR-trees

Author(s)
Reist, Philipp; Preiswerk, Pascal; Tedrake, Russell L
Thumbnail
DownloadSubmitted version (1.000Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The paper presents the simulation-based variant of the LQR-tree feedback-motion-planning approach. The algorithm generates a control policy that stabilizes a nonlinear dynamic system from a bounded set of initial conditions to a goal. This policy is represented by a tree of feedback-stabilized trajectories. The algorithm explores the bounded set with random state samples and, where needed, adds new trajectories to the tree using motion planning. Simultaneously, the algorithm approximates the funnel of a trajectory, which is the set of states that can be stabilized to the goal by the trajectory's feedback policy. Generating a control policy that stabilizes the bounded set to the goal is equivalent to adding trajectories to the tree until their funnels cover the set. In previous work, funnels are approximated with sums-of-squares verification. Here, funnels are approximated by sampling and falsification by simulation, which allows the application to a broader range of systems and a straightforward enforcement of input and state constraints. A theoretical analysis shows that, in the long run, the algorithm tends to improve the coverage of the bounded set as well as the funnel approximations. Focusing on the practical application of the method, a detailed example implementation is given that is used to generate policies for two example systems. Simulation results support the theoretical findings, while experiments demonstrate the algorithm's state-constraints capability, and applicability to highly-dynamic systems. Keywords: Feedback motion-planning; random sampling; feedback policy; nonlinear dynamic system; trajectory library
Date issued
2016-07-11
URI
https://hdl.handle.net/1721.1/124352
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
International Journal of Robotics Research
Publisher
SAGE Publications
Citation
Reist, Philipp et al. "Feedback-motion-planning with simulation-based LQR-trees." International Journal of Robotics Research 35, 11 (July 2016): 1393-1416. 2016 The Author(s).
Version: Original manuscript
ISSN
0278-3649
1741-3176

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.