MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust Online Motion Planning with Regions of Finite Time Invariance

Author(s)
Majumdar, Anirudha; Tedrake, Russell L
Thumbnail
DownloadAccepted version (1.260Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this paper we consider the problem of generating motion plans for a nonlinear dynamical system that are guaranteed to succeed despite uncertainty in the environment, parametric model uncertainty, disturbances, and/or errors in state estimation. Furthermore, we consider the case where these plans must be generated online, because constraints such as obstacles in the environment may not be known until they are perceived (with a noisy sensor) at runtime. Previous work on feedback motion planning for nonlinear systems was limited to offline planning due to the computational cost of safety verification. Here we take a trajectory library approach by designing controllers that stabilize the nominal trajectories in the library and precomputing regions of finite time invariance (”funnels”) for the resulting closed loop system. We leverage sums-of-squares programming in order to efficiently compute funnels which take into account bounded disturbances and uncertainty. The resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot. A major advantage of the work presented here is that by explicitly taking into account the effect of uncertainty, the robot can evaluate motion plans based on how vulnerable they are to disturbances.We demonstrate our method on a simulation of a plane flying through a two dimensional forest of polygonal trees with parametric uncertainty and disturbances in the form of a bounded ”cross-wind”. Keywords: Lyapunov Function; Motion Planning; Unmanned Aerial Vehicle; Model Predictive Control; Time Invariance
Date issued
2013
URI
https://hdl.handle.net/1721.1/124358
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Algorithmic Foundations of Robotics X
Publisher
Springer Berlin Heidelberg
Citation
Majumdar, Anirudha and Russ Tedrake. "Robust Online Motion Planning with Regions of Finite Time Invariance." Algorithmic Foundations of Robotics X, edited by E. Frazzoli et al, Springer, 2013: 543–558.
Version: Author's final manuscript
ISBN
9783642362781
9783642362798
ISSN
1610-7438
1610-742X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.