MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reflection fusion categories

Author(s)
Etingof, Pavel I; Galindo, César
Thumbnail
DownloadSubmitted version (315.9Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We introduce the notion of a reflection fusion category, which is a type of a G-crossed category generated by objects of Frobenius–Perron dimension 1 and [mathematical figure; see source], where p is an odd prime. We show that such categories correspond to orthogonal reflection groups over [mathematical figure; see source]. This allows us to use the known classification of irreducible reflection groups over finite fields to classify irreducible reflection fusion categories. ©2018 Keywords: fusion categories; reflection groups; coxeter groups; G-crossed categories
Date issued
2018-12
URI
https://hdl.handle.net/1721.1/124360
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Journal of Algebra
Publisher
Elsevier BV
Citation
Etingof, Pavel, and César Galindo, "Reflection fusion categories." Journal of Algebra 516 (2018): p. 172-96 doi 10.1016/j.jalgebra.2018.09.006 ©2018 Author(s)
Version: Original manuscript
ISSN
1090-266X
0021-8693

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.