Solubility Limit of Cu and Factors Governing the Reactivity of Cu–CeO[subscript 2] Assessed from First-Principles Defect Chemistry and Thermodynamics
Author(s)
Sun, Lixin; Yildiz, Bilge
DownloadAccepted version (3.490Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Cu-CeO[subscript 2] is a promising material system for low-temperature water gas shift reactions. The solubility and oxidation state of Cu in Cu-CeO[subscript 2] is important for these reactions, but these values have been unclear from the literature to date. We used first-principle calculations and statistical thermodynamics to assess Cu defect configurations and oxidation states in bulk ceria, at both equilibrium and non-equilibrium conditions. Cu solubility was found to be very low, lower than ppm level at equilibrium, indicating that the nanoparticles with high Cu content reported in experimental literature are, in fact, in non-equilibrium states. Thus, these non-equilibrium states were also assessed by fixing the Cu content from 0.001 to 1%. Under oxygen-rich conditions, Cu takes 3+, serving as an acceptor substitutional dopant. Increasing Cu content increases the concentrations of oxygen vacancies and Ce[superscript 3+] polarons, which can induce a higher catalytic activity compared to undoped ceria. In addition, with reducing conditions, the oxidation/reduction of the Cu between 1+ and 2+ can also facilitate surface reactions. These findings provide insights into why a higher Cu content can enhance the catalytic activity in Cu-CeO[subscript 2] .
Date issued
2018-12Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringJournal
Journal of Physical Chemistry C
Publisher
American Chemical Society (ACS)
Citation
Sun, Lixin, and Bilge Yildiz. “Solubility Limit of Cu and Factors Governing the Reactivity of Cu–CeO[subscript 2] Assessed from First-Principles Defect Chemistry and Thermodynamics.” The Journal of Physical Chemistry C 123, 1, (January 2019): 99–409.
Version: Author's final manuscript
ISSN
1932-7455