MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrinsic Resistance to Immune Checkpoint Blockade in a Mismatch Repair–Deficient Colorectal Cancer

Author(s)
Liu, David; Regev, Aviv
Thumbnail
DownloadAccepted version (1.582Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Immunotherapy with checkpoint inhibitors, such as the programmed death-1 (PD-1) antibodies pembrolizumab and nivolumab, are effective in a variety of tumors, yet not all patients respond. Tumor microsatellite instability-high (MSI-H) has emerged as a biomarker of response to checkpoint blockade, leading to the tissue agnostic approval of pembrolizumab in MSI-H cancers. Here we describe a patient with MSI-H colorectal cancer that was treated with this immune checkpoint inhibitor and exhibited progression of disease. We examined this intrinsic resistance through genomic, transcriptional, and pathologic characterization of the patient's tumor and the associated immune microenvironment. The tumor had typical MSI-H molecular features, including a high neoantigen load. We also identified biallelic loss of the gene for b2-microglobulin (B2M), whose product is critical for antigen presentation. Immune infiltration deconvolution analysis of bulk transcriptome data from this anti-PD-1–resistant tumor and hundreds of other colorectal cancer specimens revealed a high natural killer cell and M2 macrophage infiltration in the patient's cancer. This was confirmed by single-cell transcriptome analysis and multiplex immuno-fluorescence. Our study provides insight into resistance in MSI-H tumors and suggests immunotherapeutic strategies in additional genomic contexts of colorectal cancer.
Date issued
2019-06-19
URI
https://hdl.handle.net/1721.1/124400
Department
Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Biology
Journal
Cancer immunology research
Publisher
American Association for Cancer Research (AACR)
Citation
Gurjao, Carino et al. "Intrinsic Resistance to Immune Checkpoint Blockade in a Mismatch Repair–Deficient Colorectal Cancer." Cancer immunology research 7 (2019):1230-1236 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
2326-6066
2326-6074

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.