MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the prediction of critical heat flux using a physics-informed machine learning-aided framework

Author(s)
Zhao, Xingang; Salko, Robert K.; Guo, Fengdi
Thumbnail
DownloadSubmitted version (Embargoed until: 2022-01-05, 1.514Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The critical heat flux (CHF) corresponding to the departure from nucleate boiling (DNB) crisis is essential to the design and safety of a two-phase flow boiling system. Despite the abundance of predictive tools available to the thermal engineering community, the path for an accurate, robust CHF model remains elusive due to lack of consensus on the DNB triggering mechanism. This work aims to apply a physics-informed machine learning (ML)-aided hybrid framework to achieve superior predictive capabilities. Such a hybrid approach takes advantage of existing understanding in the field of interest (i.e., domain knowledge) and uses ML to capture undiscovered information from the mismatch between the actual and domain knowledge-predicted target. A detailed case study is carried out with an extensive DNB-specific CHF database to demonstrate (1) the improved performance of the hybrid approach as compared to traditional domain knowledge-based models, and (2) the hybrid model's superior generalization capabilities over standalone ML methods across a wide range of flow conditions. The hybrid framework could also readily extend its applicability domain and complexity on the fly, showing an elevated level of flexibility and robustness. Based on the case study conclusions, the window-type extrapolation mapping methodology is further proposed to better inform high-cost experimental work.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/124412
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Applied Thermal Engineering
Publisher
Elsevier BV
Citation
Zhao, Xingang, et al. “On the Prediction of Critical Heat Flux Using a Physics-Informed Machine Learning-Aided Framework.” Applied Thermal Engineering 164 (January 2020): 14540.
Version: Original manuscript
ISSN
1873-5606

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.