MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrated CMOS-compatible Q-switched mode-locked lasers at 1900nm with an on-chip artificial saturable absorber

Author(s)
Shtyrkova, Katia; Callahan, Patrick T.; Li, Nanxi; Magden, Emir Salih; Ruocco, Alfonso; Vermeulen, Diedrik Rene Georgette; Kaertner, Franz X; Watts, Michael; Ippen, Erich Peter; ... Show more Show less
Thumbnail
DownloadPublished version (11.22Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a CMOS-compatible, Q-switched mode-locked integrated laser operating at 1.9 µm with a compact footprint of 23.6 × 0.6 × 0.78mm. The Q-switching rate is 720 kHz, the mode-locking rate is 1.2 GHz, and the optical bandwidth is 17nm, which is sufficient to support pulses as short as 215 fs. The laser is fabricated using a silicon nitride on silicon dioxide 300-mm wafer platform, with thulium-doped Al[subscript 2]O[subscript 3] glass as a gain material deposited over the silicon photonics chip. An integrated Kerr-nonlinearity-based artificial saturable absorber is implemented in silicon nitride. A broadband (over 100 nm) dispersion-compensating grating in silicon nitride provides sufficient anomalous dispersion to compensate for the normal dispersion of the other laser components, enabling femtosecond-level pulses. The laser has no off-chip components with the exception of the optical pump, allowing for easy co-integration of numerous other photonic devices such as supercontinuum generation and frequency doublers which together potentially enable fully on-chip frequency comb generation.
Date issued
2019-02
URI
https://hdl.handle.net/1721.1/124414
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Lincoln Laboratory; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Optics Express
Publisher
The Optical Society
Citation
Shtyrkova, Katia, et al. “Integrated CMOS-Compatible Q-Switched Mode-Locked Lasers at 1900nm with an on-Chip Artificial Saturable Absorber.” Optics Express 27, 3 (February 2019): 3542 © 2019 Optical Society of America
Version: Final published version
ISSN
1094-4087

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.