Show simple item record

dc.contributor.authorGorin, Vadim
dc.contributor.authorMarcus, Adam W.
dc.date.accessioned2020-03-30T20:44:37Z
dc.date.available2020-03-30T20:44:37Z
dc.date.issued2020-02
dc.date.submitted2017-11
dc.identifier.issn1687-0247
dc.identifier.issn1073-7928
dc.identifier.urihttps://hdl.handle.net/1721.1/124436
dc.description.abstractThree operations on eigenvalues of real/complex/quaternion (corresponding to β=1,2,4⁠) matrices, obtained from cutting out principal corners, adding, and multiplying matrices, can be extrapolated to general values of β>0 through associated special functions. We show that the β→∞ limit for these operations leads to the finite free projection, additive convolution, and multiplicative convolution, respectively. The limit is the most transparent for cutting out the corners, where the joint distribution of the eigenvalues of principal corners of a uniformly-random general β self-adjoint matrix with fixed eigenvalues is known as the β-corners process. We show that as β→∞ these eigenvalues crystallize on an irregular lattice consisting of the roots of derivatives of a single polynomial. In the second order, we observe a version of the discrete Gaussian Free Field put on top of this lattice, which provides a new explanation as to why the (continuous) Gaussian Free Field governs the global asymptotics of random matrix ensembles. ©2020en_US
dc.description.sponsorshipNSF (Grant DMS-1407562)en_US
dc.description.sponsorshipNSF (Grant DMS-1664619)en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionof10.1093/IMRN/RNY052en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleCrystallization of random matrix orbitsen_US
dc.typeArticleen_US
dc.identifier.citationGorin, Vadim, and Adam W. Marcus, "Crystallization of random matrix orbits." International mathematics research notices 2020, 3 (February 2020): p. 883-913 doi 10.1093/imrn/rny052 ©2020 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalInternational mathematics research noticesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-12T17:52:15Z
dspace.date.submission2019-11-12T17:52:18Z
mit.journal.volume2020en_US
mit.journal.issue3en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record