Show simple item record

dc.contributor.authorLuo, Yuan
dc.contributor.authorSzolovits, Peter
dc.date.accessioned2020-03-30T21:26:13Z
dc.date.available2020-03-30T21:26:13Z
dc.date.issued2019-01
dc.date.submitted2018-12
dc.identifier.isbn978-1-5386-5488-0
dc.identifier.isbn978-1-5386-5487-3
dc.identifier.isbn978-1-5386-5489-7
dc.identifier.urihttps://hdl.handle.net/1721.1/124439
dc.description.abstractThis paper presents a Lisp architecture for a portable NLP system, termed LAPNLP, for processing clinical notes. LAPNLP integrates multiple standard, customized and in-house developed NLP tools. Our system facilitates portability across different institutions and data systems by incorporating an enriched Common Data Model (CDM) to standardize necessary data elements. It utilizes UMLS to perform domain adaptation when integrating generic domain NLP tools. It also features stand-off annotations that are specified by positional reference to the original document. We built an interval tree based search engine to efficiently query and retrieve the stand-off annotations by specifying positional requirements. We also developed a utility to convert an inline annotation format to stand-off annotations to enable the reuse of clinical text datasets with inline annotations. We experimented with our system on several NLP facilitated tasks including computational phenotyping for lymphoma patients and semantic relation extraction for clinical notes. These experiments showcased the broader applicability and utility of LAPNLP. ©2018 IEEE. Keywords: portable NLP; computational phenotyping; relation extraction; common data model; Lispen_US
dc.description.sponsorshipNational Library of Medicine of the NIH (Grant R21LM012618-01)en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/BIBM.2018.8621521en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleImplementing a portable clinical NLP system with a common data model: a Lisp perspectiveen_US
dc.typeArticleen_US
dc.identifier.citationLuo, Yuan, and Peter Szolovits, "Implementing a portable clinical NLP system with a common data model: a Lisp perspective." Proceedings, 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2018), December 3-6, 2018, Madrid, Spain (Piscataway, N.J.: IEEE, 2018): doi 10.1109/BIBM.2018.8621521 ©2018 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalIEEE International Conference on Bioinformatics and Biomedicineen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-10T17:43:18Z
dspace.date.submission2019-07-10T17:43:19Z
mit.journal.volume2018en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record