Characteristic disruptions of an excitable carbon cycle
Author(s)
Rothman, Daniel H.
DownloadPublished version (1.211Mb)
Publisher Policy
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The history of the carbon cycle is punctuated by enigmatic transient changes in the ocean’s store of carbon. Mass extinction is always accompanied by such a disruption, but most disruptions are relatively benign. The less calamitous group exhibits a characteristic rate of change whereas greater surges accompany mass extinctions. To better understand these observations, I formulate and analyze a mathematical model that suggests that disruptions are initiated by perturbation of a permanently stable steady state beyond a threshold. The ensuing excitation exhibits the characteristic surge of real disruptions. In this view, the magnitude and timescale of the disruption are properties of the carbon cycle itself rather than its perturbation. Surges associated with mass extinction, however, require additional inputs from external sources such as massive volcanism. Surges are excited when CO2 enters the oceans at a flux that exceeds a threshold. The threshold depends on the duration of the injection. For injections lasting a time ti & 10, 000 y in the modern carbon cycle, the threshold flux is constant; for smaller ti, the threshold scales like ti−1. Consequently the unusually strong but geologically brief duration of modern anthropogenic oceanic CO2 uptake is roughly equivalent, in terms of its potential to excite a major disruption, to relatively weak but longer-lived perturbations associated with massive volcanism in the geologic past.
Date issued
2019-07-08Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences
Citation
Rothman, Daniel H. "Characteristic disruptions of an excitable carbon cycle." Proceedings of the National Academy of Sciences of the United States of America 116 (2019): 14813-14822 © 2019 The Author
Version: Final published version
ISSN
0027-8424
1091-6490
Keywords
Multidisciplinary