Spatial optimization for radiation therapy of brain tumours
Author(s)
Meaney, Cameron
DownloadPublished version (733.8Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Glioblastomas are the most common primary brain tumours. They are known for their highly aggressive growth and invasion, leading to short survival times. Treatments for glioblastomas commonly involve a combination of surgical intervention, chemotherapy, and external beam radiation therapy (XRT). Previous works have not only successfully modelled the natural growth of glioblastomas in vivo, but also show potential for the prediction of response to radiation prior to treatment. This suggests that the efficacy of XRT can be optimized before treatment in order to yield longer survival times. However, while current efforts focus on optimal scheduling of radiotherapy treatment, they do not include a similarly sophisticated spatial optimization. In an effort to improve XRT, we present a method for the spatial optimization of radiation profiles. We expand upon previous results in the general problem and examine the more physically reasonable cases of 1-step and 2-step radiation profiles during the first and second XRT fractions. The results show that by including spatial optimization in XRT, while retaining a constant prescribed total dose amount, we are able to increase the total cell kill from the clinically-applied uniform case.
Date issued
2019-06-28Department
Massachusetts Institute of Technology. Department of PhysicsJournal
PLoS one
Publisher
Public Library of Science (PLoS)
Citation
Meaney, Cameron et al. "Spatial optimization for radiation therapy of brain tumours." PLoS one 14 (2019) © 2019 The Author(s)
Version: Final published version
ISSN
1932-6203
Keywords
General Biochemistry, Genetics and Molecular Biology, General Agricultural and Biological Sciences, General Medicine