Show simple item record

dc.contributor.authorTokić, Grgur
dc.contributor.authorYue, Dick K. P.
dc.date.accessioned2020-04-02T13:44:53Z
dc.date.available2020-04-02T13:44:53Z
dc.date.issued2019-10-31
dc.identifier.issn1553-7358
dc.identifier.urihttps://hdl.handle.net/1721.1/124476
dc.description.abstractEnergy consumption is one of the primary considerations in animal locomotion. In swimming locomotion, a number of questions related to swimming energetics of an organism and how the energetic quantities scale with body size remain open, largely due to the difficulties with modeling and measuring the power production and consumption. Based on a comprehensive theoretical framework that incorporates cyclic muscle behavior, structural dynamics and swimming hydrodynamics, we perform extensive computational simulations and show that many of the outstanding problems in swimming energetics can be explained by considering the coupling between hydrodynamics and muscle contraction characteristics, as well as the trade-offs between the conflicting performance goals of sustained swimming speed U and cost of transport COT. Our results lead to three main conclusions: (1) in contrast to previous hypotheses, achieving optimal values of U and COT is independent of producing maximal power or efficiency; (2) muscle efficiency in swimming, in contrast to that in flying or running, decreases with increasing body size, consistent with muscle contraction characteristics; (3) the long-standing problem of two disparate patterns of longitudinal power output distributions in swimming fish can be reconciled by relating the two patterns to U-optimal or COT-optimal swimmers, respectively. We also provide further evidence that the use of tendons in caudal regions is beneficial from an energetic perspective. Our conclusions explain and unify many existing observations and are supported by computational data covering nine orders of magnitude in body size.en_US
dc.language.isoen
dc.publisherPublic Library of Science (PLoS)en_US
dc.relation.isversionof10.1371/journal.pcbi.1007387en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.subjectEcologyen_US
dc.subjectModelling and Simulationen_US
dc.subjectComputational Theory and Mathematicsen_US
dc.subjectGeneticsen_US
dc.subjectEcology, Evolution, Behavior and Systematicsen_US
dc.subjectMolecular Biologyen_US
dc.subjectCellular and Molecular Neuroscienceen_US
dc.titleEnergetics of optimal undulatory swimming organismsen_US
dc.typeArticleen_US
dc.identifier.citationTokić, Grgur and Dick K. P. Yue. "Energetics of optimal undulatory swimming organisms." PloS one 15 (2019): e1007387 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalPloS oneen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-02-10T20:05:55Z
dspace.date.submission2020-02-10T20:05:58Z
mit.journal.volume15en_US
mit.journal.issue10en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record