Show simple item record

dc.contributor.authorOran, Daniel David
dc.contributor.authorRodriques, Samuel Gordon
dc.contributor.authorGao, Ruixuan
dc.contributor.authorAsano, Shoh
dc.contributor.authorSkylar-Scot, Mark A.
dc.contributor.authorChen, Fei
dc.contributor.authorTillberg, Paul W.
dc.contributor.authorMarblestone, Adam H.
dc.contributor.authorBoyden, Edward S.
dc.date.accessioned2020-04-08T17:07:21Z
dc.date.available2020-04-08T17:07:21Z
dc.date.issued2018-12
dc.identifier.issn1095-9203
dc.identifier.urihttps://hdl.handle.net/1721.1/124539
dc.description.abstractLithographic nanofabrication is often limited to successive fabrication of two-dimensional (2D) layers. We present a strategy for the direct assembly of 3D nanomaterials consisting of metals, semiconductors, and biomolecules arranged in virtually any 3D geometry. We used hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We then optically patterned these scaffolds in three dimensions, attached one or more functional materials, and then shrank and dehydrated them in a controlled way to achieve nanoscale feature sizes in a solid substrate. We demonstrate that our process, Implosion Fabrication (ImpFab), can directly write highly conductive, 3D silver nanostructures within an acrylic scaffold via volumetric silver deposition. Using ImpFab, we achieve resolutions in the tens of nanometers and complex, non–self-supporting 3D geometries of interest for optical metamaterials. ©2017en_US
dc.description.sponsorshipONR (no. N00014-17-1-2977)en_US
dc.description.sponsorshipNIH (no. 1R01EB024261)en_US
dc.description.sponsorshipNIH (no. 1U01MH106011)en_US
dc.description.sponsorshipNIH Director’s Pioneer Award (no. 1DP1NS087724)en_US
dc.description.sponsorshipNIH (no. 1RM1HG008525)en_US
dc.description.sponsorshipNIH (no. 1R24MH106075)en_US
dc.description.sponsorshipNational Science Foundation Graduate Research Fellowship Program (award no. 1122374)en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/SCIENCE.AAU5119en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.title3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffoldsen_US
dc.typeArticleen_US
dc.identifier.citationOran, Daniel, et al., "3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds." Science 362, 6420 (December 2018): p. 1281-5 doi 10.1126/SCIENCE.AAU5119 ©2018 Author(s)en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-07-19T14:04:03Z
dspace.date.submission2019-07-19T14:04:05Z
mit.journal.volume362en_US
mit.journal.issue6420en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record