Show simple item record

dc.contributor.authorPant, Mihir
dc.contributor.authorEnglund, Dirk
dc.contributor.authorGuha, Saikat
dc.date.accessioned2020-04-09T14:09:32Z
dc.date.available2020-04-09T14:09:32Z
dc.date.issued2019-03-06
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/124555
dc.description.abstractDespite linear-optical fusion (Bell measurement) being probabilistic, photonic cluster states for universal quantum computation can be prepared without feed-forward by fusing small n-photon entangled clusters, if the success probability of each fusion attempt is above a threshold, λc(n). We prove a general bound λc(n)≥1∕(n-1), and develop a conceptual method to construct long-range-connected clusters where λc(n) becomes the bond percolation threshold of a logical graph. This mapping lets us find constructions that require lower fusion success probabilities than currently known, and settle a heretofore open question by showing that a universal cluster state can be created by fusing 3-photon clusters over a 2D lattice with a fusion success probability that is achievable with linear optics and single photons, making this attractive for integrated-photonic realizations.en_US
dc.description.sponsorshipUnited States. Army (Contract W31P4Q-15-C-0045)en_US
dc.description.sponsorshipUnited States. Air Force. Office of Scientific Research (FA9550-14-1-0052)en_US
dc.description.sponsorshipUnited States. Navy (Contract N00014-16-C-2069)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-019-08948-xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.subjectGeneral Biochemistry, Genetics and Molecular Biologyen_US
dc.subjectGeneral Physics and Astronomyen_US
dc.subjectGeneral Chemistryen_US
dc.titlePercolation thresholds for photonic quantum computingen_US
dc.typeArticleen_US
dc.identifier.citationPant, Mihir et al. "Percolation thresholds for photonic quantum computing." Nature communications 10 (2019): 1038 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalNature communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-02-06T14:37:39Z
dspace.date.submission2020-02-06T14:37:42Z
mit.journal.volume10en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record