Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy
Author(s)
Singh, Vijay Raj; Kamm, Roger D.; Yaqoob, Zahid; So, Peter T. C.
DownloadPublished version (1.454Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Mechanical stress on eukaryotic nucleus has been implicated in a diverse range of diseases including muscular dystrophy and cancer metastasis. Today, there are very few non-perturbative methods to quantify nuclear mechanical properties. Interferometric microscopy, also known as quantitative phase microscopy (QPM), is a powerful tool for studying red blood cell biomechanics. The existing QPM tools, however, have not been utilized to study biomechanics of complex eukaryotic cells either due to lack of depth sectioning, limited phase measurement sensitivity, or both. Here, we present depth-resolved confocal reflectance interferometric microscopy as the next generation QPM to study nuclear and plasma membrane biomechanics. The proposed system features multiple confocal scanning foci, affording 1.5 micron depth-resolution and millisecond frame rate. Furthermore, a near common-path interferometer enables quantifying nanometer-scale membrane fluctuations with better than 200 picometers sensitivity. Our results present accurate quantification of nucleic envelope and plasma membrane fluctuations in embryonic stem cells.
Date issued
2019-08-13Department
Massachusetts Institute of Technology. Laser Biomedical Research Center; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Nature communications
Publisher
Springer Science and Business Media LLC
Citation
Singh, Vijay Raj et al. "Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy." Nature communications 10 (2019): 3652 © 2019 The Author(s)
Version: Final published version
ISSN
2041-1723
Keywords
General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry