Show simple item record

dc.contributor.authorMa, Wei-Chiu
dc.contributor.authorChu, Hang
dc.contributor.authorZhou, Bolei
dc.contributor.authorUrtasun, Raquel
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2020-04-13T17:55:24Z
dc.date.available2020-04-13T17:55:24Z
dc.date.issued2018-09
dc.identifier.isbn978-3-030-01263-2
dc.identifier.isbn978-3-030-01264-9
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/124570
dc.description.abstractIntrinsic image decomposition-decomposing a natural image into a set of images corresponding to different physical causes-is one of the key and fundamental problems of computer vision. Previous intrinsic decomposition approaches either address the problem in a fully supervised manner, or require multiple images of the same scene as input. These approaches are less desirable in practice, as ground truth intrinsic images are extremely difficult to acquire, and requirement of multiple images pose severe limitation on applicable scenarios. In this paper, we propose to bring the best of both worlds. We present a two stream convolutional neural network framework that is capable of learning the decomposition effectively in the absence of any ground truth intrinsic images, and can be easily extended to a (semi-)supervised setup. At inference time, our model can be easily reduced to a single stream module that performs intrinsic decomposition on a single input image. We demonstrate the effectiveness of our framework through extensive experimental study on both synthetic and real-world datasets, showing superior performance over previous approaches in both single-image and multi-image settings. Notably, our approach outperforms previous state-of-the-art single image methods while using only 50% of ground truth supervision. ©2018 Keywords: intrinsic decomposition; unsupervised learning; self-supervised learningen_US
dc.language.isoen
dc.publisherSpringer Nature Switzerland AGen_US
dc.relation.isversionof10.1007/978-3-030-01264-9_13en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleSingle image intrinsic decomposition without a single intrinsic imageen_US
dc.typeArticleen_US
dc.identifier.citationMa, Wei-Chiu, et al., "Single image intrinsic decomposition without a single intrinsic image." Computer Vision: ECCV 2018, 15th European Conference on Computer Vision, September 8-14, 2018, Munich, Germany, edited by Vittorio Ferrari et al. Lecture Notes in Computer Science ; 11218 (Cham, Switzerland: Springer, 2018): p. 211-29 doi 10.1007/978-3-030-01264-9_13 ©2018 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalEuropean Conference on Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-11T17:24:14Z
dspace.date.submission2019-07-11T17:24:15Z
mit.journal.volume2018en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record