Designing yeast as plant-like hyperaccumulators for heavy metals
Author(s)
Sun, George L.; Reynolds, Erin. E.; Belcher, Angela M.
DownloadPublished version (1.204Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Hyperaccumulators typically refer to plants that absorb and tolerate elevated amounts of heavy metals. Due to their unique metal trafficking abilities, hyperaccumulators are promising candidates for bioremediation applications. However, compared to bacteria-based bioremediation systems, plant life cycle is long and growing conditions are difficult to maintain hindering their adoption. Herein, we combine the robust growth and engineerability of bacteria with the unique waste management mechanisms of plants by using a more tractable platform-the common baker’s yeast-to create plant-like hyperaccumulators. Through overexpression of metal transporters and engineering metal trafficking pathways, engineered yeast strains are able to sequester metals at concentrations 10–100 times more than established hyperaccumulator thresholds for chromium, arsenic, and cadmium. Strains are further engineered to be selective for either cadmium or strontium removal, specifically for radioactive Sr90. Overall, this work presents a systematic approach for transforming yeast into metal hyperaccumulators that are as effective as their plant counterparts.
Date issued
2019-11-08Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Koch Institute for Integrative Cancer Research at MITJournal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Sun, George L., Erin.E. Reynolds and Angela M. Belcher. "Designing yeast as plant-like hyperaccumulators for heavy metals." Nature Communications 10 (2019): 5080 © 2019 The Author(s)
Version: Final published version
ISSN
2041-1723
Keywords
General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry