Show simple item record

dc.contributor.authorFrappier, Vincent
dc.contributor.authorJenson, Justin Michael
dc.contributor.authorZhou, Jianfu
dc.contributor.authorGrigoryan, Gevorg
dc.contributor.authorKeating, Amy E.
dc.date.accessioned2021-09-08T14:19:02Z
dc.date.available2020-04-14T19:29:40Z
dc.date.available2021-09-08T14:19:02Z
dc.date.issued2019-02
dc.date.submitted2018-12
dc.identifier.issn0969-2126
dc.identifier.urihttps://hdl.handle.net/1721.1/124632.2
dc.description.abstractUnderstanding the relationship between protein sequence and structure well enough to design new proteins with desired functions is a longstanding goal in protein science. Here, we show that recurring tertiary structural motifs (TERMs) in the PDB provide rich information for protein-peptide interaction prediction and design. TERM statistics can be used to predict peptide binding energies for Bcl-2 family proteins as accurately as widely used structure-based tools. Furthermore, design using TERM energies (dTERMen) rapidly and reliably generates high-affinity peptide binders of anti-apoptotic proteins Bfl-1 and Mcl-1 with just 15%–38% sequence identity to any known native Bcl-2 family protein ligand. High-resolution structures of four designed peptides bound to their targets provide opportunities to analyze the strengths and limitations of the computational design method. Our results support dTERMen as a powerful approach that can complement existing tools for protein engineering.en_US
dc.description.sponsorshipNIGMS (Award R01-GM110048)en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.str.2019.01.008en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleTertiary Structural Motif Sequence Statistics Enable Facile Prediction and Design of Peptides that Bind Anti-apoptotic Bfl-1 and Mcl-1en_US
dc.typeArticleen_US
dc.identifier.citation"Tertiary Structural Motif Sequence Statistics Enable Facile Prediction and Design of Peptides that Bind Anti-apoptotic Bfl-1 and Mcl-1." Structure 27, 4 (April 2019): 606-617.e5. © 2019 Elsevier Ltden_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalStructureen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-04-06T17:26:56Z
dspace.date.submission2020-04-06T17:26:58Z
mit.journal.volume27en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version