MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seasonal Cycles of Along-Track Tropical Cyclone Maximum Intensity

Author(s)
Gilford, Daniel M.; Susan, Solomon; Emanuel, Kerry Andrew
Thumbnail
DownloadPublished version (1.600Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This study investigates relationships between observed tropical cyclone (TC) maximum intensities and potential intensity (PI) over the seasonal cycle. To directly compare observed and potential intensities, one must account for month-to-month variability in TC tracks and frequencies. Historical TC best track data and reanalysis PI calculations are combined to develop an along-track record of observed maximum and potential intensities for each storm in the satellite-era (1980-2015) across four ocean basins. Overall, observed maximum intensity seasonal cycles agree well with those of along-track PI. An extreme value theory application shows that at least 25 storms must be observed in a given month to have high confidence that the most intense wind speeds of historical TCs follow along-track PI seasonality. In the North Atlantic and Southern Hemisphere regions, there are too few observed storms outside their traditional TC seasons, limiting PI applicability across the seasonal cycle. Small intraseasonal along-track PI variabilities in these regions are driven by TC thermodynamic disequilibrium and sea surface temperatures. Thermodynamic disequilibrium drives seasonal cycles of eastern North Pacific along-track PI and observed maximum intensity, which minimize in August and maximize in June and October. Western North Pacific along-track PI and observed maximum intensity seasonal cycles are relatively flat, and have a local minimum in August because of reduced thermodynamic efficiency, which is linked to anomalously warm near-tropopause outflow temperatures. Powerful ( > 65ms[superscript -1]) western Pacific TCs historically occur in every month except January, due to a combination of tropopause region and SST seasonal influences.
Date issued
2019-04
URI
https://hdl.handle.net/1721.1/124643
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Monthly Weather Review
Publisher
American Meteorological Society
Citation
Gilford, Daniel M., et al. “Seasonal Cycles of Along-Track Tropical Cyclone Maximum Intensity.” Monthly Weather Review 147, 7 (July 2019): 2417–32. © 2019 American Meteorological Society.
Version: Final published version
ISSN
1520-0493
0027-0644

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.