MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-supervised biomedical translation with cycle Wasserstein regression GaNs

Author(s)
McDermott, Matthew; Yan, Tom; Naumann, Tristan; Hunt, Nathan; Suresh, Harini S.; Szolovits, Peter; Ghassemi, Marzyeh; ... Show more Show less
Thumbnail
DownloadAccepted version (568.1Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The biomedical field offers many learning tasks that share unique challenges: large amounts of unpaired data, and a high cost to generate labels. In this work, we develop a method to address these issues with semi-supervised learning in regression tasks (e.g., translation from source to target). Our model uses adversarial signals to learn from unpaired datapoints, and imposes a cycle-loss reconstruction error penalty to regularize mappings in either direction against one another. We first evaluate our method on synthetic experiments, demonstrating two primary advantages of the system: 1) distribution matching via the adversarial loss and 2) regularization towards invertible mappings via the cycle loss. We then show a regularization effect and improved performance when paired data is supplemented by additional unpaired data on two real biomedical regression tasks: estimating the physiological effect of medical treatments, and extrapolating gene expression (transcriptomics) signals. Our proposed technique is a promising initial step towards more robust use of adversarial signals in semi-supervised regression, and could be useful for other tasks (e.g., causal inference or modality translation) in the biomedical field.
Date issued
2018
URI
https://hdl.handle.net/1721.1/124668
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the AAAI Conference on Artificial Intelligence
Citation
McDermott, Matthew B. A. et al. "Semi-Supervised Biomedical Translation with Cycle Wasserstein Regression GANs." AAAI Conference on Artificial Intelligence, February 2018, New Orleans, AAAI, 2018.
Version: Author's final manuscript
ISSN
2159-5399

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.