MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linking ITCZ Migrations to the AMOC and North Atlantic/Pacific SST Decadal Variability

Author(s)
Moreno Chamarro, Eduardo; Marshall, John C.; Deworth, D. L.
Thumbnail
DownloadPublished version (9.664Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We examine the link between migrations in the intertropical convergence zone (ITCZ) and changes in the Atlantic meridional overturning circulation (AMOC), Atlantic multidecadal variability (AMV), and Pacific decadal oscillation (PDO). We use a coupled climate model that allows us to integrate over climate noise and assess underlying mechanisms. We use an ensemble of ten 300-yr-long simulations forced by a 50-yr oscillatory North Atlantic Oscillation (NAO)-derived surface heat flux anomaly in the North Atlantic, and a 4000-yr-long preindustrial control simulation performed with GFDL CM2.1. In both setups, an AMV phase change induced by a change in the AMOC's cross-equatorial heat transport forces an atmospheric interhemispheric energy imbalance that is compensated by a change in the cross-equatorial atmospheric heat transport due to a meridional ITCZ shift. Such linkages occur on decadal time scales in the ensemble driven by the imposed forcing, and internally on multicentennial time scales in the control. Regional precipitation anomalies differ between the ensemble and the control for a zonally averaged ITCZ shift of similar magnitude, which suggests a dependence on time scale. Our study supports observational evidence of an AMV-ITCZ link in the twentieth century and further links it to the AMOC, whose long-time-scale variability can influence the phasing of ITCZ migrations. In contrast to the AMV, our calculations suggest that the PDO does not drive ITCZ migrations, because the PDO does not modulate the interhemispheric energy balance.
Date issued
2019-12
URI
https://hdl.handle.net/1721.1/124693
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Climate
Publisher
American Meteorological Society
Citation
Moreno-Chamarro, E., et al. “Linking ITCZ Migrations to the AMOC and North Atlantic/Pacific SST Decadal Variability.” Journal of Climate 33, 3 (February 2020): 893–905. © 2019 American Meteorological Society.
Version: Final published version
ISSN
1520-0442
0894-8755

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.