Show simple item record

dc.contributor.authorPrinn, Ronald G.
dc.date.accessioned2020-04-16T15:38:40Z
dc.date.available2020-04-16T15:38:40Z
dc.date.issued2019-08
dc.date.submitted2019-07
dc.identifier.issn1866-3591
dc.identifier.urihttps://hdl.handle.net/1721.1/124698
dc.description.abstractUnderstanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). Assessing the relative importance of CH4 in comparison to CO2 is complicated by its shorter atmospheric lifetime, stronger warming potential, and atmospheric growth rate variations over the past decade, the causes of which are still debated. Two major difficulties in reducing uncertainties arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (top-down approach) to be 572 Tg CH4 yr−1 (range 538–593, corresponding to the minimum and maximum estimates of the ensemble), of which 357 Tg CH4 yr−1 or ~ 60 % are attributed to anthropogenic sources (range 50–65 %). This total emission is 27 Tg CH4 yr−1 larger than the value estimated for the period 2000–2009 and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for the period 2003–2012 (Saunois et al. 2016). Since 2012, global CH4 emissions have been tracking the carbon intensive scenarios developed by the Intergovernmental Panel on Climate Change (Gidden et al., 2019). Bottom-up methods suggest larger global emissions (737 Tg CH4 yr−1, range 583–880) than top-down inversion methods, mostly because of larger estimated natural emissions from sources such as natural wetlands, other inland water systems, and geological sources. However the strength of the atmospheric constraints on the top-down budget, suggest that these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric-based emissions indicates a predominance of tropical emissions (~ 65 % of the global budget, < 30° N) compared to mid (~ 30 %, 30° N–60° N) and high northern latitudes (~ 4 %, 60° N–90° N). Our analyses suggest that uncertainties associated with estimates of anthropogenic emissions are smaller than those of natural sources, with top-down inversions yielding larger uncertainties than bottom-up inventories and models. The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some global source estimates are smaller compared to the previously published budgets (Saunois et al. 2016; Kirschke et al. 2013), particularly for vegetated wetland emissions that are lower by about 35 Tg CH4 yr−1 due to efforts to partition vegetated wetlands and inland waters. Emissions from geological sources are also found to be smaller by 7 Tg CH4 yr−1, and wild animals by 8 Tg CH4 yr−1. However the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of freshwater emissions resulting from recent research and the integration of emissions from estuaries. Priorities for improving the methane budget include: i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; ii) further development of process-based models for inland-water emissions; iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements and urban monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; iv) improvements of transport models and the representation of photochemical sinks in top-down inversions, and v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane. ©2019en_US
dc.language.isoen
dc.publisherCopernicus GmbHen_US
dc.relation.isversionof10.5194/essd-2019-128en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceCopernicus Publicationsen_US
dc.titleThe Global Methane Budget 2000-2017en_US
dc.typeArticleen_US
dc.identifier.citationSaunois, Marielle, et al., "The global methane budget 2000-2017." Earth system science data. Papers in open discussion (2019): doi 10.5194/essd-2019-128 ©2019 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Global Change Scienceen_US
dc.relation.journalEarth system science data. Papers in open discussionen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-04-07T15:13:50Z
dspace.orderedauthorsSaunois, Marielle ; Stavert, Ann R. ; Poulter, Ben ; Bousquet, Philippe ; Canadell, Joseph G. ; Jackson, Robert B. ; Raymond, Peter A. ; Dlugokencky, Edward J. ; Houweling, Sander ; Patra, Prabir K. ; Ciais, Philippe ; Arora, Vivek K. ; Bastviken, David ; Bergamaschi, Peter ; Blake, Donald R. ; Brailsford, Gordon ; Bruhwiler, Lori ; Carlson, Kimberly M. ; Carrol, Mark ; Castaldi, Simona ; Chandra, Naveen ; Crevoisier, Cyril ; Crill, Patrick M. ; Covey, Kristofer ; Curry, Charles L. ; Etiope, Giuseppe ; Frankenberg, Christian ; Gedney, Nicola ; Hegglin, Michaela I. ; Höglund-Isaksson, Lena ; Hugelius, Gustaf ; Ishizawa, Misa ; Ito, Akihiko ; Janssens-Maenhout, Greet ; Jensen, Katherine M. ; Joos, Fortunat ; Kleinen, Thomas ; Krummel, Paul B. ; Langenfelds, Ray L. ; Laruelle, Goulven G. ; Liu, Licheng ; Machida, Toshinobu ; Maksyutov, Shamil ; McDonald, Kyle C. ; McNorton, Joe ; Miller, Paul A. ; Melton, Joe R. ; Morino, Isamu ; Müller, Jureck ; Murgia-Flores, Fabiola ; Naik, Vaishali ; Niwa, Yosuke ; Noce, Sergio ; O'Doherty, Simon ; Parker, Robert J. ; Peng, Changhui ; Peng, Shushi ; Peters, Glen P. ; Prigent, Catherine ; Prinn, Ronald G. ; Ramonet, Michel ; Regnier, Pierre ; Riley, William J. ; Rosentreter, Judith A. ; Segers, Arjo ; Simpson, Isobel J. ; Shi, Hao ; Smith, Steven J. ; Steele, L. Paul ; Thornton, Brett F. ; Tian, Hanqin ; Tohjima, Yasunori ; Tubiello, Francesco N. ; Tsuruta, Aki ; Viovy, Nicolas ; Voulgarakis, Apostolos ; Weber, Thomas S. ; Weele, Michiel van ; Werf, Guido R. van der ; Weiss, Ray F. ; Worthy, Doug ; Wunch, Debra ; Yin, Yi ; Yoshida, Yukio ; Zhang, Wenxin ; Zhang, Zhen ; Zhao, Yuanhong ; Zheng, Bo ; Zhu, Qing ; Zhu, Qiuan ; Zhuang, Qianlaien_US
dspace.date.submission2020-04-07T15:13:54Z
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record