MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs

Author(s)
Sabatini, David M.
Thumbnail
DownloadAccepted version (1.875Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria. Using CRISPR/Cas9-based screening, Minton et al. identify serine catabolic enzyme SHMT2 as differentially required in low glucose. Via SHMT2, serine contributes to mitochondrial one-carbon pools, THF-based cofactors required for carbon transfer reactions including mitochondrial initiator tRNA formylation. Therefore, SHMT2 loss impacts mitochondrial translation, depleting mitochondrially encoded proteins and decreasing respiration.
Date issued
2018-02
URI
https://hdl.handle.net/1721.1/124709
Department
Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology; Koch Institute for Integrative Cancer Research at MIT
Journal
Molecular Cell
Publisher
Elsevier BV
Citation
Minton, Denise R. et al. "Serine Catabolism by SHMT2 Is Required for Proper Mitochondrial Translation Initiation and Maintenance of Formylmethionyl-tRNAs." Molecular Cell 69 (2018): 610-621 © 2018 The Author(s)
Version: Author's final manuscript
ISSN
1097-2765

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.