MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fermi Large Area Telescope detection of extended gamma-ray emission from the radio galaxy Fornax A

Author(s)
Unknown author
Thumbnail
DownloadAckermann_2016_ApJ_826_1.pdf (1.010Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report the Fermi Large Area Telescope detection of extended γ-ray emission from the lobes of the radio galaxy Fornax A using 6.1 years of Pass 8 data. After Centaurus A, this is now the second example of an extended γ-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be $\lt 14$% of the total γ-ray flux. A preferred alignment of the γ-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on ~0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the γ-rays. With the extended nature of the $\gt 100\;{\rm{MeV}}$ γ-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the γ-ray fluxes by factors of about ~2–3, depending on the EBL model adopted. An additional γ-ray spectral component is thus required, and could be due to hadronic emission arising from proton–proton collisions of cosmic rays with thermal plasma within the radio lobes. ©2014
Date issued
2016-07
URI
https://hdl.handle.net/1721.1/124790
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical journal
Publisher
American Astronomical Society
Citation
Ackermann, M., et al., "Fermi Large Area Telescope detection of extended gamma-ray emission from the radio galaxy Fornax A." Astrophysical journal 826 (July 2016): no. 1 doi 10.3847/0004-637X/826/1/1 ©2016 Author(s)
Version: Final published version
ISSN
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.