Show simple item record

dc.contributor.authorAbel, Zachary R.
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorEisenstat, Sarah
dc.contributor.authorLynch, Jayson
dc.contributor.authorSchardl, Tao B.
dc.contributor.authorShapiro-Ellowitz, Isaac
dc.date.accessioned2020-04-22T17:38:44Z
dc.date.available2020-04-22T17:38:44Z
dc.date.issued2013-02
dc.date.submitted2012-05
dc.identifier.issn0218-1959
dc.identifier.issn1793-6357
dc.identifier.urihttps://hdl.handle.net/1721.1/124805
dc.description.abstractWe consider two types of folding applied to equilateral plane graph linkages. First, under continuous folding motions, we show how to reconfigure any linear equilateral tree (lying on a line) into a canonical configuration. By contrast, it is known that such reconfiguration is not always possible for linear (nonequilateral) trees and for (nonlinear) equilateral trees. Second, under instantaneous folding motions, we show that an equilateral plane graph has a noncrossing linear folded state if and only if it is bipartite. Furthermore, we show that the equilateral constraint is necessary for this result, by proving that it is strongly NP-complete to decide whether a (nonequilateral) plane graph has a linear folded state. Equivalently, we show strong NP-completeness of deciding whether an abstract metric polyhedral complex with one central vertex has a noncrossing flat folded state. By contrast, the analogous problem for a polyhedral manifold with one central vertex (single-vertex origami) is only weakly NP-complete. ©2013en_US
dc.language.isoen
dc.publisherWorld Scientific Pub Co Pte Lten_US
dc.relation.isversionof10.1142/S0218195913600017en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleFolding equilateral plane graphsen_US
dc.typeArticleen_US
dc.identifier.citationAbel, Zachary, et al., "Folding equilateral plane graphs." International journal of computational geometry & applications 23, 2 (February 2013): p. 75-92 doi 10.1142/S0218195913600017 ©2013 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalInternational journal of computational geometry & applicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-06-18T19:05:39Z
dspace.date.submission2019-06-18T19:05:40Z
mit.journal.volume23en_US
mit.journal.issue2en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record