Show simple item record

dc.contributor.authorLusztig, George
dc.contributor.authorYun, Zhiwei
dc.date.accessioned2022-01-05T18:55:38Z
dc.date.available2020-04-23T17:31:38Z
dc.date.available2021-09-09T17:51:05Z
dc.date.available2022-01-05T18:55:38Z
dc.date.issued2013-07
dc.date.submitted2012-03
dc.identifier.issn2320-3110
dc.identifier.issn0970-1249
dc.identifier.urihttps://hdl.handle.net/1721.1/124838.3
dc.description.abstractWe prove a conjecture in [L11] stating that certain polynomials P-Y(sigma),(w)(q) introduced in [LV11] for twisted involutions in an affine Weyl group give ( -q)-analogues of weight multiplicities of the Langlands dual group G. We also prove that the signature of a naturally defined hermitian form on each irreducible representation of e can be expressed in terms of these polynomials P-Y(sigma),(w)(q).en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0758262)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0969470)en_US
dc.language.isoen
dc.relation.isversionofhttp://www.mathjournals.org/jrms/2013-028-000/2013-28A-SPL-014.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA (-q)-analogue of weight multiplicitiesen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, George and Zhiwei Yun. “A (-q)-analogue of weight multiplicities.” Journal of the Ramanujan Mathematical Society 28 (July 2013): 311-340.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournal of the Ramanujan Mathematical Societyen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-03-31T17:07:08Z
dspace.date.submission2020-03-31T17:07:11Z
mit.journal.volume28en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusCompleteen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version