| dc.contributor.author | Trigo Neri Tabuada, Goncalo Jorge | |
| dc.date.accessioned | 2020-04-24T17:15:07Z | |
| dc.date.available | 2020-04-24T17:15:07Z | |
| dc.date.issued | 2018 | |
| dc.identifier.issn | 1945-001X | |
| dc.identifier.issn | 1073-2780 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/124851 | |
| dc.description.abstract | Making use of the recent theory of noncommutative motives, we prove that Schur-finiteness in the setting of Voevodsky’s mixed motives is invariant under homological projective duality. As an application, we show that the mixed motives of smooth linear sections of certain (Lagrangian) Grassmannians, spinor varieties, and determinantal varieties, are Schur-finite. Finally, we upgrade our applications from Schur-finiteness to Kimura-finiteness. | en_US |
| dc.language.iso | en | |
| dc.publisher | International Press of Boston | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.4310/MRL.2018.V25.N1.A10 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | A note on the Schur-finiteness of linear sections | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Tabuada, Gonçalo. “A Note on the Schur-Finiteness of Linear Sections.” Mathematical Research Letters 25, 1 (2018): 237–53 | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.relation.journal | Mathematical Research Letters | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2019-11-24T15:22:05Z | |
| dspace.date.submission | 2019-11-24T15:22:07Z | |
| mit.journal.volume | 25 | en_US |
| mit.journal.issue | 1 | en_US |
| mit.metadata.status | Complete | |