Show simple item record

dc.contributor.authorTrigo Neri Tabuada, Goncalo Jorge
dc.date.accessioned2020-04-24T17:15:07Z
dc.date.available2020-04-24T17:15:07Z
dc.date.issued2018
dc.identifier.issn1945-001X
dc.identifier.issn1073-2780
dc.identifier.urihttps://hdl.handle.net/1721.1/124851
dc.description.abstractMaking use of the recent theory of noncommutative motives, we prove that Schur-finiteness in the setting of Voevodsky’s mixed motives is invariant under homological projective duality. As an application, we show that the mixed motives of smooth linear sections of certain (Lagrangian) Grassmannians, spinor varieties, and determinantal varieties, are Schur-finite. Finally, we upgrade our applications from Schur-finiteness to Kimura-finiteness.en_US
dc.language.isoen
dc.publisherInternational Press of Bostonen_US
dc.relation.isversionofhttp://dx.doi.org/10.4310/MRL.2018.V25.N1.A10en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA note on the Schur-finiteness of linear sectionsen_US
dc.typeArticleen_US
dc.identifier.citationTabuada, Gonçalo. “A Note on the Schur-Finiteness of Linear Sections.” Mathematical Research Letters 25, 1 (2018): 237–53en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalMathematical Research Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-24T15:22:05Z
dspace.date.submission2019-11-24T15:22:07Z
mit.journal.volume25en_US
mit.journal.issue1en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record