MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Environment-assisted Quantum-enhanced Sensing with Electronic Spins in Diamond

Author(s)
Cooper, Alexandre; Sun, Won Kyu Calvin; Jaskula, Jean-Christophe; Cappellaro, Paola
Thumbnail
DownloadPublished version (662.1Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The performance of solid-state quantum sensors based on electronic spin defects is often limited by the presence of environmental spin impurities that cause decoherence. A promising approach to improve these quantum sensors is to convert environment spins into useful resources for sensing, in particular, entangled states. However, the sensitivity enhancement that can be achieved from entangled states is limited by experimental constraints, such as control errors, decoherence, and time overheads. Here we experimentally demonstrate the efficient use of an unknown electronic spin defect in the proximity of a nitrogen-vacancy center in diamond to achieve both an entangled quantum sensor and a quantum memory for readout. We show that, whereas entanglement alone does not provide an enhancement in sensitivity, combining both entanglement and repetitive readout achieves an enhancement in performance over the use of a single-spin sensor, and more broadly we discuss regimes where sensitivity could be enhanced. Our results critically highlight the challenges in improving quantum sensors using entangled states of electronic spins, while providing an important benchmark in the quest for entanglement-assisted metrology.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/124886
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review Applied
Publisher
American Physical Society (APS)
Citation
Cooper, Alexandre, et al. “Environment-Assisted Quantum-Enhanced Sensing with Electronic Spins in Diamond.” Physical Review Applied 12, 4 (October 2019): 044047. © 2019 American Physical Society.
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.