Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2020-04-28T19:13:43Z
dc.date.available2020-04-28T19:13:43Z
dc.date.issued2017
dc.identifier.issn1098-3627
dc.identifier.urihttps://hdl.handle.net/1721.1/124911
dc.description.abstractLet k be an algebraic closure of the finite field F[subscript q] with q elements where q is a power of a prime number p. Let G be a connected reductive group over k with a fixed split F[subscript q]-rational structure, a fixed Borel subgroup B defined over F[subscript q], with unipotent radical U and a fixed maximal torus T of B defined over F[subscript q]. Let g, b, t, n be the Lie algebras of G, B, T, U. We fix a prime number l ≠ p. If λ : T(F[subscript q]) → [line over Q][subscript * under superscript l] is a character, we can lift λ to a character λ˜ : B(F[subscript q]) → [line over Q][subscript * under superscript l] trivial on U(F[subscript q]) and we can form the induced representation [mathematical figure; see resource] of G(F[subscript q]). [First paragraph] ©2017en_US
dc.publisherAMSen_US
dc.relation.isversionofhttps://www.ams.org/books/conm/683/conm683-endmatter.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleGeneric character sheaves on groups over k[∊]/[∊]ren_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G., "Generic character sheaves on groups over k[∊]/[∊]r." In Beliakova, Anna, and Aaron D. Lauda, eds., Categorification and Higher Representation Theory (Providence, R.I.: American Mathematical Society, 2017): p. 227-46 ©2017 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCategorification and Higher Representation Theoryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.date.submission2020-03-31T17:32:11Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record