MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT)

Author(s)
Levsh, Olesya; Weng, Jing-Ke
Thumbnail
DownloadPublished version (2.901Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Substrate permissiveness has long been regarded as the raw materials for the evolution of new enzymatic functions. In land plants, hydroxycinnamoyltransferase (HCT) is an essential enzyme of the phenylpropanoid metabolism. Although essential enzymes are normally associated with high substrate specificity, HCT can utilize a variety of non-native substrates. To examine the structural and dynamic basis of substrate permissiveness in this enzyme, we report the crystal structure of HCT from Selaginella moellendorffii and molecular dynamics (MD) simulations performed on five orthologous HCTs from several major lineages of land plants. Through altogether 17-μs MD simulations, we demonstrate the prevalent swing motion of an arginine handle on a submicrosecond timescale across all five HCTs, which plays a key role in native substrate recognition by these intrinsically promiscuous enzymes. Our simulations further reveal how a non-native substrate of HCT engages a binding site different from that of the native substrate and diffuses to reach the catalytic center and its co-substrate. By numerically solving the Smoluchowski equation, we show that the presence of such an alternative binding site, even when it is distant from the catalytic center, always increases the reaction rate of a given substrate. However, this increase is only significant for enzyme-substrate reactions heavily influenced by diffusion. In these cases, binding non-native substrates ‘off-center’ provides an effective rationale to develop substrate permissiveness while maintaining the native functions of promiscuous enzymes.
Date issued
2018-10-26
URI
https://hdl.handle.net/1721.1/124937
Department
Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology
Journal
PLOS computational biology
Publisher
Public Library of Science (PLoS)
Citation
Chiang, Ying-Chih et al. “Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT).” PLOS computational biology 14 (2018): e1006511 © 2018 The Author(s)
Version: Final published version
ISSN
1553-7358
Keywords
Ecology, Modelling and Simulation, Computational Theory and Mathematics, Genetics, Ecology, Evolution, Behavior and Systematics, Molecular Biology, Cellular and Molecular Neuroscience

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.